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Abstract
We introduce the Jonas transformation (a transformation of the Darboux type)
for the general second-order differential equation in two independent variables.
We present a discrete version of the transformation for a 6-point difference
scheme. The scheme is appropriate for the solution of a hyperbolic-type initial-
boundary value problem. We discuss several reductions and specifications of
the transformations.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

One can observe an increasing role of difference equations over the past few decades.
Efforts were undertaken to discretize differential equations so as not to lose properties (e.g.
symmetries) that differential equations exhibit. It turned out quickly that difference equations
in many aspects are richer and more fundamental than their continuous counterparts (many
interesting structures disappear under a continuum limit) and difference equations started to
be something more than equations mimicking differential equations. In the present work, we
encounter essential differences between discrete and continuous mathematical structures once
more.

The aim of this paper is to complete the existing theory of the Darboux transformations
(more precisely we focus here on generalizations of the Moutard transformation [1, 2] and the
Jonas fundamental transformation [3], thus we use the term ‘Darboux transformations’ in the
broadest possible sense that include for example the binary Darboux transformations—cf [4])
for differential equations and what more important to show the impact of the generalization
on the theory of the Darboux transformations for difference equations.

The main idea of this paper is to start systematic surveys that can free the theory of
integrable systems from their strong dependence on coordinate systems (parametrization of
surfaces), desirable by many physicists author spoke to. Due to results of this paper one can
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compensate lack of possibility of change of independent variables x̃ = f (x, y), ỹ = g(x, y)

in the case of difference equations. We expect that this ‘compensation’ will be especially
important in surveys on integrable aspects of the difference geometry [5, 6].

We recall that the classical fundamental transformation by Jonas [3, 7] (regarded as the
most general Darboux transformation) acts on the conjugate nets in projective space P

n. Two-
dimensional conjugate nets in P

n are maps R
2 � (x, y) �→ (ψ1(x, y), . . . , ψn+1(x, y)) ∈ R

n+1

(where sequence (ψ1, . . . , ψn+1) is interpreted as homogeneous coordinates of P
n) such that

(ψ1, . . . , ψn+1) is n + 1-tuple of solutions of scalar equation (from now on, unless otherwise
stated, small letters denote functions of real independent variables x and y and subscripts
preceded by comma denote partial differentiation with respect to indicated variables)

ψ,xy + wψ,x + zψ,y + f ψ = 0. (1)

Thus in the case when the net is two-dimensional the Jonas transformation provides us with the
Darboux transformation for the two-dimensional linear hyperbolic differential equation in a
canonical form and the transformation is nothing but the spatial part of the Darboux–Bäcklund
transformation for the two-component KP hierarchy.

When the net is more than two-dimensional the Jonas fundamental transformation provides
us with the Darboux transformation for the set of compatible equations of the form (1) and
serves as the spatial part of the Darboux–Bäcklund transformation for the multicomponent
KP hierarchies (in other words yields the Bäcklund transformation for the n-wave interaction
equations called sometimes the Darboux equations; see e.g. [8, 9]).

The fundamental transformation has been successfully translated into the discrete
language [10–12]. The discrete counterpart of the conjugate nets is the quadrilateral lattices in
P

n governed by a system of equations of the type (unless otherwise stated in almost the whole
paper capital letters denote functions of two discrete variables m and n ((m, n) ∈ Z

2), �m

and �n denotes forward difference operators �m� := �m+1,n − � and �n� := �m,n+1 − �

while �−m and �−n denotes backward difference operators �−m� := �m−1,n − � and
�−n� := �m,n−1 − �, note we identify � ≡ �m,n and in the whole paper we apply this
convention):

�m�n� + A�m� + B�n� + C� = 0. (2)

That is why in recent years notion of integrability of discrete (difference) equations was often
related to planarity—the 4-point schemes were the building blocks of the theory.

The idea to consider equations of integrable systems theory not only on Z
2 lattice but

also on more sophisticated quad-graphs, appeared only recently [13–17]. Even so, the 4-point
schemes remained the building blocks of the theory.

In the present paper, we show that planarity is not crucial from the point of view of
integrable systems. The theory of the Darboux transformations can be extended to more
general schemes: a 6-point difference scheme and a 7-point self-adjoint difference scheme.

It turns out that the general second-order differential equation in two independent variables

(aψ,x + cψ,y),x + (cψ,x + bψ,y),y + wψ,x + zψ,y − f ψ = 0

is covariant under the Darboux transformation (section 3) so the conjugate nets are no longer
of key importance. On the discrete level it reflects in the fact that one can generalize the
4-point scheme to the 6-point scheme (see figure 1 and section 4)

A�m+2,n + B�m,n+2 + 2C�m+1,n+1 + G�m+1,n + H�m,n+1 = F�.

The Moutard transformation for the 7-point self-adjoint scheme (see figure 2)

Am+1,nNm+1,n + ANm−1,n + Bm,n+1Nm,n+1 + BNm,n−1 + Cm+1,nNm+1,n−1

+ Cm,n+1Nm−1,n+1 = FN
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Figure 1. The 6-point scheme.
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•            •

m−1,n+1 m,n+1
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m,n−1 m+1,n−1

Figure 2. The 7-point scheme.

an example of equation given on a star (cross), has been derived in the paper [18] and that is
why we concentrate here mainly on the 6-point scheme. However, the present paper is thought
to provide a brief overview on the topic of discretizations of 2D second-order differential
equations that are covariant under the Darboux transformations (the reader can find in closing
section 7 references to articles on integrable aspects of equations given on stars). At the
moment we only underline that a choice of a difference scheme restricts sorts of initial-
boundary value problems one can solve by means of the scheme. So it is important to indicate
first what sort of initial-boundary conditions one would like to solve and then consider only
the schemes that allow to solve the initial-boundary value problem. We start the paper with
description of a well-like initial-boundary value problem (section 2) we have in mind while
the 6-point scheme is considered.

In this paper we discuss also how the general Darboux transformation can be reduced or
specified. We take the stand that introduction of novel terminology (such us ‘specification’)
is necessary to discern procedures we deal with. We begin the discussion of reductions and
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specifications with the continuous case (section 5). First, we consider the Moutard reduction
(subsection 5.1) which is a very classical construction [1] but to the best of our knowledge in
full generality was given only recently [18]. Second, we discuss specifications (subsection 5.2)
and this part is (stands to reason) new, specification to hitherto considered ‘conjugate’ case or
its elliptic counterpart are just examples of such procedure. Third, we introduce convenient
gauge specifications (subsection 5.3) the transformations can be written in.

In the discrete case we consider gauge specifications (subsection 6.1) and specifications
(subsection 6.2) only, postponing discussion on the Moutard reduction to a forthcoming paper.
We would like to mention here that we are not able to show the reduction of the general 6-point
scheme that leads to a transformation of the Moutard type. In a forthcoming article we show
that the following 10-point scheme

(A + B)� + (Am+1,n + Bm,n+1)�m+1,n+1 + A�m−1,n+1 + B�m+1,n−1 + Am+1,n�m+2,n

+Bm,n+1�m,n+2 + Cm+1,n�m+2,n−1 + Cm,n+1�m−1,n+2 + (Cm+1,n − F)�m+1,n

+ (Cm,n+1 − F)�m,n+1 = 0 (3)

is appropriate for solution of the initial boundary value problem defined in section 2 and can
be regarded as a Darboux covariant discretization of the self-adjoint differential equation.

We would like to stress once more that although we deal in the paper with linear equations
only, the existence of Darboux transformations makes this paper especially important for the
theory of nonlinear integrable systems.

2. Well like initial-boundary value problem for the 6-point scheme

In the present paper we pay special attention to difference schemes that allow us to solve the
following initial boundary value problem. We prescribe the function �(m, n) in the following
points of the domain (see figure 3)

• initial conditions

{(m, n) ∈ T|m + n = 0 ∨ m + n = 1}
• boundary conditions

{(m, n) ∈ T|(m = s − ps ∧ n = ps) ∨ (m = s − qs ∧ n = qs), s = 2, 3, 4, . . .}
where T denotes regular triangular lattice, ps and qs are functions N\{1} � s �→ ps ∈ Z such
that ∀s ∈ N\{1}ps < qs .

We concentrate in the paper mainly on the schemes that allow us to find a solution
uniquely, at least in the ‘upper half-plane’ {(m, n) ∈ T|m + n � 0} of the lattice.

For instance in the case of the 6-point scheme all the values at white points can be found
uniquely provided that two following conditions are satisfied:

(1) ∀(m, n) ∈ N × N, Am,n 	= 0, Bm,n 	= 0, Fm,n 	= 0;
(2) ∀s ∈ N\{1}, det[M(s)] 	= 0; where M(s) are matrices



2Cs−ps−2,ps
Bs−ps−2,ps

0 · · · 0
As−ps−3,ps+1 2Cs−ps−3,ps+1 Bs−ps−3,ps+1 0 0

0
. . .

...

...
. . . 0

0 · · · 0 As−qs+1,qs−1 2Cs−qs+1,qs−1 Bs−qs+1,qs−1

0 · · · 0 As−qs ,qs−2 2Cs−qs ,qs−2




.

Similar result can be obtained for the 10-point scheme (3) with the only essential difference
that the solution can be found uniquely only in upper half-plane.
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Figure 3. Initial-boundary value problem. The initial values at points of two neighbouring straight
lines are given as well as two boundary conditions (black points).

3. Darboux transformations for the 2D second-order differential equation

It is a basic observation that the map ψt �→ ψ̄ t given by

ψ̄ t ,x = δψt ,x + βψt ,y ψ̄ t ,y = −αψt ,x − γψt ,y (4)

where α, β, γ and δ are C1 real functions (of independent variables x and y with an open,
simply connected subset D of R

2 as a domain) such that ∀(x, y) ∈ D, γ δ − αβ 	= 0 and
α2 + β2 + (γ + δ)2 	= 0, is an invertible map between solution spaces of two differential
equations of second order in two independent variables. Indeed, the compatibility condition
of (4), which ensures the existence of ψ̄ t function, reads

Ltψt = 0 Lt := α∂2
x + β∂2

y + (γ + δ)∂x∂y + (α,x + δ,y)∂x + (β,y + γ ,x)∂y. (5)

Obviously ψ̄ t satisfies an equation of the same type but with barred coefficients:

ᾱ = α

γ δ − αβ
, β̄ = β

γ δ − αβ
, γ̄ = δ

γ δ − αβ
, δ̄ = γ

γ δ − αβ
. (6)

As we shall see, every second-order equation in two independent variables

Lf ψ = 0 Lf := a∂2
x + b∂2

y + 2c∂x∂y + (a,x + c,y + w)∂x + (b,y + c,x + z)∂y − f (7)

can be transformed into the form (5) through a gauge transformation

Lf �→ L := φ̂Lf θ̂ (8)

where φ̂ and θ̂ are operators of multiplying by function φ(x, y) and θ(x, y) respectively (we
tacitly assume the functions are of class C2). In other words operators (5) and (7) are gauge
equivalent, we refer to operator Lt as the elementary transformable form of the second-order
differential operator and we can express it in the following theorem.
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Theorem 1. Gauge transformation (8) makes from an arbitrary 2D linear second-order
operator Lf an operator in the elementary transformable form iff

Lf θ = 0 and (Lf )†φ = 0. (9)

Proof. Indeed, request that operator L defined in equation (8) is of the elementary
transformable form Lt (5) gives

α = φθa β = φθb γ + δ = 2φθc (10)

Lf θ = 0 (11)

α,x + δ,y = [(aθ),x + (cθ),y + aθ,x + cθ,y + wθ ]φ

β,y + γ ,x = [(cθ),x + (bθ),y + cθ,x + bθ,y + zθ ]φ.
(12)

On introducing the auxiliary function p

p := 1

2φθ
(δ − γ ) (13)

and treating equations (10) and (13) as the definition of the functions α, β, γ and δ and
eliminating these functions from equations (12) one can rewrite equations (12) in the form

(θφp),y = φ2

[
a

(
θ

φ

)
,x + c

(
θ

φ

)
,y + w

θ

φ

]

(θφp),x = −φ2

[
c

(
θ

φ

)
,x + b

(
θ

φ

)
,y + z

θ

φ

]
.

(14)

The function p exists provided that

φLf θ − θ(Lf )†φ = 0 (15)

where (Lf )† denotes the operator formally adjoint to the operator Lf

(Lf )† := ∂x(a∂x + c∂y − w) + ∂y(b∂y + c∂x − z) − f. (16)

Taking into account equations (11) and (15) we get conditions (9).
Conversely, having taken functions θ and φ that obey conditions (9) and making gauge

transformation (8) one can easily check that operator L is in the elementary transformable
form. First, we check up that the coefficients w̃, z̃ and f̃ of the operator L obey f̃ = 0 and
w̃,x + z̃,y = 0 due to conditions (9). Finally, due to equation w̃,x + z̃,y = 0 we can introduce
potential κ such that w̃ = κ,y and z̃ = κ,x , and give elementary transformable form to the
equation Lψ̃ = 0 by means of Leibniz’s chain rule. �

It turns out that considerations just presented lead to Darboux transformations for the
2D linear second-order operator Lf . Namely, combination of gauge transformation (8)
(with functions φ and θ obeying (9)), map (4) (ψt �→ ψ̄ t ) and a gauge transformation
L̄t �→ L̄ := r̂L̄t ŝ is nothing but Darboux transformations for the operator Lf and we give
details in the following conclusion.

Conclusion 1 (Darboux transformations). We assume that θ and φ are C2 class functions
satisfying conditions (9), function p is given by formulae (14), r and s are arbitrary (of
class C2) functions, function d is given by d := (p2 − c2 + ab)φθ and obeys the condition
∀(x, y) ∈ D, d 	= 0. Then the map ψ �→ ψ̄ given by[

(sψ̄),x

(sψ̄),y

]
= φθ

[
p + c b

−a p − c

] [(
ψ

θ

)
,x(

ψ

θ

)
,y

]
(17)
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takes the solution space of equation (7) to the solution space of an equation of the same form
but with the new (barred) coefficients:

L̄ψ̄ = 0 L̄ := ā∂2
x + b̄∂2

y + 2c̄∂x∂y + (ā,x + c̄,y + w̄)∂x + (c̄,x + b̄,y + z̄)∂y − f̄ (18)

where the coefficients of equation (18) are related to coefficients of equation (7) by

ā = asr

d
b̄ = bsr

d
c̄ = csr

d

w̄ =
[a

d

( s

r

)
,x +

c

d

( s

r

)
,y −

(p

d

)
,y

s

r

]
r2 z̄ =

[
b

d

( s

r

)
,y +

c

d

( s

r

)
,x +

(p

d

)
,x

s

r

]
r2

f̄ =
{

−
[a

d
sx +

c + p

d
sy

]
x
−

[
b

d
sy +

c − p

d
sx

]
y

}
r.

(19)

4. The 6-point scheme and its Darboux transformations

One can repeat considerations from the previous section in the discrete case. Indeed, starting
from pair of equations

�m�̄t = δ�m�t + β�n�
t �n�̄

t = −α�m�t − γ�n�
t (20)

(where the functions α, β, γ and δ are functions of discrete variables m and n) and writing
down their compatibility condition

Lt�t = 0

Lt := αm+1,nTmTm + βm,n+1TnTn + (γm+1,n + δm,n+1)TmTn

− (αm+1,n + α + γm+1,n + δ)Tm − (βm,n+1 + β + γ + δm,n+1)Tn + (α + β + γ + δ)

(21)

(where Tm and Tn are forward shift operators in m and n direction respectively i.e.
Tmfm,n := fm+1,n and Tnfm,n := fm,n+1) we find a 6-point scheme. One can ask if it is
possible to transform the general 6-point scheme:

Lf � = 0 Lf := ATmTm + BTnTn + 2CTmTn + GTm + HTn − F (22)

into the form (21) via a gauge transformation

Lf �→ L := �̂Lf ̂ (23)

only. The answer is positive. Operators Lt (21) and Lf (22) are gauge equivalent and we refer
to the operators Lt as the 6-point operator in the elementary transformable form. Through
analogy with the continuous case we have the following theorem.

Theorem 2. Gauge transformation (23) makes from operator Lf (22) an operator in the
elementary transformable form Lt (21) iff the function  satisfies equation (22)

Am+2,n + Bm,n+2 + 2Cm+1,n+1 + Gm+1,n + Hm,n+1 = F (24)

and function � is a solution of the equation formally adjoint to equation (22)

Lf †
� = 0

Lf †
:= Am−2,nT−mT−m + Bm,n−2T−nT−n + 2Cm−1,n−1T−mT−n

+ Gm−1,nT−m + Hm,n−1T−n − F (25)
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where T−m and T−n are backward shift operators in m and n direction respectively i.e.
T−mfm,n := fm−1,n and T−nfm,n := fm,n−1. Then the functions α, β, γ and δ in equation (21)
are given by

α = Am−1,n�m−1,nm+1,n β = Bm,n−1�m,n−1m,n+1

γ = (Cm−1,n − Pm−1,n)�m−1,nm,n+1 δ = (Cm,n−1 + Pm,n−1)�m,n−1m+1,n

(26)

where P is an auxiliary function defined by

�−m(�m+1,n+1P) = −(Bm,n−1�m,n−1m,n+1 + B�m,n+2 + Cm−1,n�m−1,nm,n+1

+ C�m+1,n+1 + H�m,n+1)

�−n(�m+1,n+1P) = Am−1,n�m−1,nm+1,n + A�m+2,n + Cm,n−1�m,n−1m+1,n

+ C�m+1,n+1 + G�m+1,n.

(27)

The proof is similar to the proof in the continuous case and therefore we omit it. Just like
in the continuous case, a combination of gauge transformation (23) (with functions  and
� obeying (24) and (25) respectively), map (20) (�t �→ �̄t ) and a gauge transformation
L̄t �→ L̄ := R̂L̄t Ŝ yields the Darboux transformations for the 6-point scheme (22). We give
details of the Darboux transformations in the following conclusion.

Conclusion 2 (Darboux transformations for the 6-point scheme). The map � �→ �̄ given by[
�m(S�̄)

�n(S�̄)

]
=

[
(Cm,n−1 + Pm,n−1)�m,n−1m+1,n Bm,n−1�m,n−1m,n+1

−Am−1,n�m−1,nm+1,n (Pm−1,n − Cm−1,n)�m−1,nm,n+1)

]

×
[
�m

(
�


)
�n

(
�


)
]

(28)

where function  satisfies equation (22) while function � is a solution of equation (25) and
P is defined via equations (27), takes the solution space of equation (22) to the solution space
of an equation of the same form with new (barred) coefficients related to the old ones via

Ā = RSm+2,n�m+2,n

Dm+1,n

A B̄ = RSm,n+2�m,n+2

Dm,n+1
B F̄ = RS�

D
F

2C̄

RSm+1,n+1
= m+2,n�m+1,n−1(C + P)m+1,n−1

Dm+1,n

+
m,n+2�m−1,n+1(C − P)m−1,n+1

Dm,n+1

Ḡ

RSm+1,n

= −m+2,n�m+1,n−1(C + P)m+1,n−1 + m+2,n�A

Dm+1,n

− m,n+1�m−1,n(C − P)m−1,n + m+1,n�m−1,nAm−1,n

D

H̄

RSm,n+1
= −m,n+2�m−1,n+1(C − P)m−1,n+1 + m,n+2�B

Dm,n+1

− m+1,n�m,n−1(C + P)m,n−1 + m,n+1�m,n−1Bm,n−1

D

(29)

where R and S are arbitrary non-vanishing functions, while D is a function given by
D = [(Pm−1,n − Cm−1,n)(Pm,n−1 + Cm,n−1) + Am−1,nBm,n−1]m+1,nm,n+1�m−1,n�m,n−1 and
is assumed not to vanish on the whole lattice.
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5. Gauge specifications, specifications and reductions

One can reduce (or gauge, or specify) the Darboux transformations so as they map between the
solution spaces of a restricted class of equations. We would like to discern three procedures:
reductions, specifications and gauge specifications, for their role in the theory of integrable
systems is completely different. We deal with gauge equivalent classes of equations rather
than single equation and from this point of view the gauge specifications are not important—
they choose a representative of the equivalence class. We mimic change of the independent
variables by the specifications. Finally and most importantly, we deal with the reductions
which essentially change the transformation (one has to impose constraints on transformation
data as we shall see in the example of the Moutard reduction).

It is natural to investigate linear constraints first. Therefore we assume that matrix
coefficients in equation (17) obey a linear constraint

a11(p + c) + a12b − a21a + a22(p − c) = 0 (30)

where aij are prescribed functions of x and y. We want the constraint to be preserved, which
means the coefficients of the inverse matrix have to obey the same constraint

a11(p − c) − a12b + a21a + a22(p + c) = 0. (31)

From equations (30) and (31) we infer

(a11 + a22)p = 0

and we shall discuss two cases p = 0 and a11 + a22 = 0 separately.

5.1. Moutard reduction (p = 0), reductions

We have to satisfy the constraints p = 0 and (a11 − a22)c + a12b − a21a = 0. The latter
constraint can be satisfied if one take a11 = a22, a12 = 0 and a21 = 0. To satisfy equations (14)
in the presence of condition p = 0 it is enough to put φ = θ and w = 0 = z (i.e. demand that
operator is formally self-adjoint). Moreover the functions r and s are no longer arbitrary, they
must obey the constraint r

s
= const. As a result we obtain a transformation for formally self-

adjoint equations which are usually referred to (in the case a = 0 = b, c = 1
2 , s = r = 1

2θ ) as
the Moutard transformation.

The procedure that imposes the constraints on the transformation data φ and θ (θ = φ in
the Moutard case) we call reduction of the transformation.

5.2. Specifications a11 + a22 = 0

The reduction is not the only procedure we have at our disposal. If we take a11 = −a22 we
have to satisfy the constraint 2a11c + a12b − a21a = 0. Two examples are as follows:

(a) a = 0 = b, a11 = 0 and c = 1 which is nothing but specification to the ‘conjugate’ case;
(b) c = 0, a12 = 0 = a21 (with the option for further specification a = ±b).

In these cases we only specify (specialize) the operator and do not affect the transformation
data.

5.3. Gauge specifications, affine form, elementary transformable form

The idea not to consider the operator itself, but their equivalence classes with respect to gauge
transformations goes back to Laplace and Darboux [19]. One can then develop the theory in
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gauge-independent language, or choose a gauge appropriate to one’s needs. We concentrate
on the latter procedure. We take two arbitrary functions θ0, φ0 of C2 class. Then the operator

Lg := φ̂0Lf θ̂0

has coefficients

(ag, bg, cg, f g) = θ0φ0(a, b, c, Lf θ0)

wg = θ0φ0w − (θ0)2

(
φ0

θ0

)
,xa − (θ0)2

(
φ0

θ0

)
,yc

zg = θ0φ0z − (θ0)
2

(
φ0

θ0

)
,yb − (θ0)

2

(
φ0

θ0

)
,xc

and the operator adjoint to Lg is

(Lg)† := θ̂0Lf φ̂0.

If in addition we define

ψg = ψ

θ0
φg = φ

φ0
θg = θ

θ0

then the form of the transformation remains unaltered. The affine gauge (i.e. a gauge such
that Lf θ0 = 0 and as a consequence f g = 0) is commonly used. Here we would like to draw
attention to the elementary transformable gauge defined by

Lf θ0 = 0 (Lf )†φ0 = 0.

This gauge specification brings both the operator Lg and its adjoint (Lg)† to elementary
transformable form i.e., as we know from theorem 1, conditions

f g = 0 wg,x + zg,y = 0

hold. The functions sg and rg are no longer arbitrary. To ensure the transformed (barred)
equation is in elementary transformable form it is enough (but not necessary) to put the
functions sg and rg constant.

6. Specifications, discrete case

6.1. Gauge specifications

In the discrete case one can specify the gauge as well. Namely, we take two arbitrary functions
0�0, then operator

Lg := �̂0Lf ̂0

has coefficients

(Ag, Bg, Cg,Gg,Hg, F g) = �0(A0
m+2,n, B0

m,n+2, C0
m+1,n+1,G0

m+1,n, H0
m,n+1, F0).

If we take 0 such that Lf 0 = 0 we obtain the affine gauge. Then coefficients of operator
Lg obey constraint

Ag + Bg + 2Cg + Gg + Hg − Fg = 0. (32)

If one puts S = const then the above constraint is preserved under the Darboux transformation.
If in addition we take �0 such that (Lf )†�0 = 0 satisfies the equation then the coefficients of
the operator Lg obey also the constraint

A
g

m−1,n+1 + B
g

m+1,n−1 + 2Cg + G
g

m,n+1 + H
g

m+1,n − F
g

m+1,n+1 = 0 (33)

and the operator Lg is in elementary transformable form of the 6-point scheme. To ensure that
both constraints (32) and (33) are preserved under the Darboux transformation it is enough,
(but not necessary) to put R = const and S = const.
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6.2. Specifications, quadrilateral lattices and a 3-point scheme

A glance at the transformation laws of the coefficients of the 6-point scheme (29) provides us
with conclusions.

(A) All constraints A = 0, B = 0 and F = 0 are preserved under the Darboux transformation
(28). Constraint A = 0 = B (or alternatively A = 0 = F or B = 0 = F ) is a specification
to the celebrated 4-point scheme i.e. to quadrilateral lattice case subject of study in
many papers (we confine ourselves to citing articles where Darboux transformations are
considered):

• quadrilateral lattices (Jonas fundamental transformations) [11, 12, 21–23];
• circular lattices and quadratic reductions (Ribaucour type transformations) [26–29];
• Moutard-type transformations [24, 25];
• symmetric (Goursat) type transformations [30, 31].

The initial boundary value problem suitable for this scheme is no longer of the type
mentioned in section 2.

(B) Constraint C = 0 is not preserved under the Darboux transformation (28). So we have
not got a discretization of specification (b) from section 5.2.

(C) If we impose F = 0 together with A = 0 = B we obtain Darboux transformation for a
3-point scheme which corresponds to the continuous degenerate case a2 + b2 + c2 = 0.

7. Conclusions and perspectives

In this paper, we have presented the 6-point difference scheme—a Darboux covariant
generalization of the extensively studied 4-point schemes. It is worth looking at the literature
on integrable aspects of the star-like systems to see that the theory of integrable difference
systems based on difference schemes other than the 4-point schemes is still in its infancy.

Indeed, it is remarkable that star-like (or cross-like) operators such as the 7-point scheme
or the 5-point scheme appeared in the integrable literature only occasionally [33, 34, 37–40].
Almost none of the pioneering results were used to obtain solutions of nonlinear integrable
systems. The only exceptions are works concerning the discrete time Toda equation and its
generalizations [41–46], which are nonlinear 5-point schemes themselves and the work [18]
the result of which were used to obtain solutions of a generalization of the Toda chain to a two-
dimensional lattice [47]. It is the right place to mention that the relationship between integrable
systems on quad-graphs and equations on star-like schemes of the discrete time Toda type
has been established [13–17] and we would like to refer to this relationship as the sub-lattice
approach. In some cases the approach allows one to transfer solutions from an equation on a
quad-graph to a star-like equation on a sub-graph (sub-lattice) of the original quad-graph. It is
not clear under what circumstances the sub-lattice approach preserves integrability. However
in the paper [48] it was proved that for discrete lattices governed by the discrete Moutard
equation

�m+1,n+1 + � = G(�m+1,n + �m,n+1) (34)

integrability features like the existence of the Darboux transformations are inherited by the
sub-lattice.

We conclude this paper with a list of open problems and perspectives. These are as
follows:

• first and the most important, to derive hierarchies of nonlinear equations associated with
all the equations presented here;
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• second, to generalize the results of this paper to more dimensions;
• third, to generalize the quadratic and symmetric reductions to the 6-point scheme;
• fourth, since the 6-point scheme admits the decomposition [(M1Tm +N1Tn +X1)(M2Tm +

N2Tn +X2)+H ]ψ = 0, it can be used to develop the theory of the Laplace transformations
for difference equations [25, 32–35, 40];

• fifth, to develop a simple idea by professor Decio Levi that not only the operators
�m�n�−m�−n are of importance. For example one can use Tm −T−m, Tn −T−n, Tn −Tm

and TnTm − 1 operators instead;
• sixth, to investigate the role of the transformations given here in the difference geometry.

We also would like to mention that on this level of generality, giving q-difference analogues
of the discrete schemes we have introduced is straightforward [36].
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for motivating me to write the paper, Jan Cieśliński for indicating to me that the Combescure
transformation is fundamental in Jonas’s fundamental transformation and Frank Nijhoff for
the literature guidance. Special thanks to Paul Spicer and James Atkinson for making the
paper readable for native English speakers. The initial stage of the work was supported by
Polish KBN grants 2 PO3B 126 22 and 1 P03B 017 28 while at the final stage (starting from
1st April 2005) the paper was supported solely by the European Community under a Marie
Curie Intra-European Fellowship, contract no MEIF-CT-2005-011228.

References

[1] Moutard Th F 1878 Sur la construction des équations de la forme 1
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